Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Chem Bio Eng ; 1(2): 99-112, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38566967

RESUMO

Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.

2.
ACS Nano ; 18(12): 8571-8599, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483840

RESUMO

T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.


Assuntos
Células Apresentadoras de Antígenos , Ativação Linfocitária , Humanos , Imunoterapia/métodos , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva
3.
Adv Healthc Mater ; : e2302436, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224141

RESUMO

Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.

4.
Angew Chem Int Ed Engl ; 63(3): e202315552, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38038248

RESUMO

Droplet-based microfluidics represents a disruptive technology in the field of chemistry and biology through the generation and manipulation of sub-microlitre droplets. To avoid droplet coalescence, fluoropolymer-based surfactants are commonly used to reduce the interfacial tension between two immiscible phases to stabilize droplet interfaces. However, the conventional preparation of fluorosurfactants involves multiple steps of conjugation reactions between fluorinated and hydrophilic segments to form multiple-block copolymers. In addition, synthesis of customized surfactants with tailored properties is challenging due to the complex synthesis process. Here, we report a highly efficient synthetic method that utilizes living radical polymerization (LRP) to produce fluorosurfactants with tailored functionalities. Compared to the commercialized surfactant, our surfactants outperform in thermal cycling for polymerase chain reaction (PCR) testing, and exhibit exceptional biocompatibility for cell and yeast culturing in a double-emulsion system. This breakthrough synthetic approach has the potential to revolutionize the field of droplet-based microfluidics by enabling the development of novel designs that generate droplets with superior stability and functionality for a wide range of applications.


Assuntos
Microfluídica , Tensoativos , Microfluídica/métodos , Polimerização , Tensoativos/química , Emulsões , Polímeros de Fluorcarboneto
5.
Nat Commun ; 14(1): 6526, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845239

RESUMO

Progress towards the integration of technology into living organisms requires power devices that are biocompatible and mechanically flexible. Aqueous zinc ion batteries that use hydrogel biomaterials as electrolytes have emerged as a potential solution that operates within biological constraints; however, most of these batteries feature inferior electrochemical properties. Here, we propose a biocompatible hydrogel electrolyte by utilising hyaluronic acid, which contains ample hydrophilic functional groups. The gel-based electrolyte offers excellent anti-corrosion ability for zinc anodes and regulates zinc nucleation/growth. Also, the gel electrolyte provides high battery performance, including a 99.71% Coulombic efficiency, over 5500 hours of long-term stability, improved cycle life of 250 hours under a high zinc utilization rate of 80%, and high biocompatibility. Importantly, the Zn//LiMn2O4 pouch cell exhibits 82% capacity retention after 1000 cycles at 3 C. This work presents a promising gel chemistry that controls zinc behaviour, offering great potential in biocompatible energy-related applications and beyond.

6.
Adv Colloid Interface Sci ; 318: 102957, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392664

RESUMO

Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.


Assuntos
Alginatos , Enzimas Imobilizadas , Alginatos/química , Enzimas Imobilizadas/química , Fenômenos Mecânicos
7.
J Cardiovasc Dev Dis ; 10(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504536

RESUMO

Fulminant myocarditis (FM) is an acute and severe form of myocarditis with rapid progression and poor clinical outcomes in the absence of acute or chronic coronary artery disease. Electrocardiogram (ECG) abnormalities can provide preliminary clues for diagnosis; however, there is a lack of systemic descriptions on ECG changes in FM populations. Thus, a retrospective analysis of 150 consecutive FM patients and 300 healthy controls was performed to determine the characteristic ECG findings in FM. All patients included had markedly abnormal ECG findings. Specifically, 83 (55.33%) patients had significantly lower voltage with remarkably decreased QRS amplitudes in all leads compared with healthy controls (p < 0.01), and 77 (51.33%) patients had a variety of arrhythmias with lethality ventricular tachycardia/ventricular fibrillation in 21 (14.00%) patients and third-degree atrioventricular block in 21 (14.00%) patients, whereas sinus tachycardia was only found in 43 (28.67%) patients with the median heart rate (HR; 88.00 bpm, IQR: 76.00-113.50) higher than that of controls (73.00 bpm, IQR: 68.00-80.00) (p = 0.000). Conduction and repolarization abnormalities were common in patients. A longer QTc interval (452.00 ms, IQR: 419.00-489.50) and QRS duration (94.00 ms, IQR: 84.00-119.00) were observed in patients compared to controls (QTc interval = 399.00 ms, IQR: 386.00-414.00; QRS duration = 90.00 ms, IQR: 86.00-98.00) (p < 0.05). Additionally, HR > 86.50 bpm, QTc > 431.50 ms, and RV5 + SV1 < 1.715 mV can be used to predict FM. Thus, marked and severe ECG abnormalities provide preliminary clues for the diagnosis of FM.

8.
Biotechnol Bioeng ; 120(11): 3276-3287, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37489850

RESUMO

Pichia pastoris (Komagataella phaffii) is a fast-growing methylotrophic yeast with the ability to assimilate several carbon sources such as methanol, glucose, or glycerol. It has been shown to have outstanding secretion capability with a variety of heterologous proteins. In previous studies, we engineered P. pastoris to co-express Escherichia coli AppA phytase and the HAC1 transcriptional activator using a bidirectional promoter. Phytase production was characterized in shake flasks and did not reflect industrial conditions. In the present study, phytase expression was explored and optimized using instrumented fermenters in continuous and fed-batch modes. First, the production of phytase was investigated under glucose de-repression in continuous culture at three dilution factors, 0.5 d-1 , 1 d-1 , and 1.5 d-1 . The fermenter parameters of these cultures were used to inform a kinetic model in batch and fed-batch modes for growth and phytase production. The kinetic model developed aided to design the glucose-feeding profile of a fed-batch culture. Kinetic model simulations under glucose de-repression and fed-batch conditions identified optimal phytase productivity at the specific growth rate of 0.041 h-1 . Validation of the model simulation with experimental data confirmed the feasibility of the model to predict phytase production in our newly engineered strain. Methanol was used only to induce the expression of phytase at high cell densities. Our results showed that high phytase production required two stages, the first stage used glucose under de-repression conditions to generate biomass while expressing phytase, and stage two used methanol to induce phytase expression. The production of phytase was improved 3.5-fold by methanol induction compared to the expression with glucose alone under de-repression conditions to a final phytase activity of 12.65 MU/L. This final volumetric phytase production represented an approximate 36-fold change compared to the flask fermentations. Finally, the phytase protein produced was assayed to confirm its molecular weight, and pH and temperature profiles. This study highlights the importance of optimizing protein production in P. pastoris when using novel promoters and presents a general approach to performing bioprocess optimization in this important production host.

9.
Adv Mater ; 35(35): e2303542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37192546

RESUMO

The combination of ferroptosis inducers and immune checkpoint blockade can enhance antitumor effects. However, the efficacy in tumors with low immunogenicity requires further investigation. In this work, a water-in-oil Pickering emulsion gel is developed to deliver (1S, 3R)-RSL-3 (RSL-3), a ferroptosis inducer dissolved in iodized oil, and programmed death-1 (PD-1) antibody, the most commonly used immune checkpoint inhibitor dissolved in water, with optimal characteristics (RSL-3 + PD-1@gel). Tumor lipase degrades the continuous oil phase, which results in the slow release of RSL-3 and PD-1 antibody and a notable antitumor effect against low-immunogenic hepatocellular carcinoma and pancreatic cancer. Intriguingly, the RSL-3 + PD-1@gel induces ferroptosis of tumor cells, resulting in antitumor immune response via accumulation of helper T lymphocyte cells and cytotoxic T cells. Additionally, the single-cell sequence profiling analysis during tumor treatment reveals the induction of ferroptosis in tumor cells together with strong antitumor immune response in ascites.

10.
Biomater Adv ; 149: 213421, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060634

RESUMO

The extracellular matrix (ECM) plays a critical role in regulating cell-matrix interactions during tumor progression. These interactions are due in large part to the biophysical properties responding to cancer cell interactions. Within in vitro models, the ECM is mimicked by hydrogels, which possess adjustable biophysical properties that are integral to tumor development. This work presents a systematic and comparative study on the impact of the biophysical properties of two widely used natural hydrogels, Matrigel and collagen gel, on tumor growth and drug response. The biophysical properties of Matrigel and collagen including complex modulus, loss tangent, diffusive permeability, and pore size, were characterised. Then the spheroid growth rates in these two hydrogels were monitored for spheroids with two different sizes (140 µm and 500 µm in diameters). An increased migratory growth was observed in the lower concentration of both the gels. The effect of spheroid incorporation within the hydrogel had a minimal impact on the hydrogel's complex modulus. Finally, 3D tumor models using different concentrations of hydrogels were applied for drug treatment using paclitaxel. Spheroids cultured in hydrogels with different concentrations showed different drug response, demonstrating the significant effect of the choice of hydrogels and their concentrations on the drug response results despite using the same spheroids. This study provides useful insights into the effect of hydrogel biophysical properties on spheroid growth and drug response and highlights the importance of hydrogel selection and in vitro model design.


Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/farmacologia , Esferoides Celulares , Colágeno/farmacologia , Matriz Extracelular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
11.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971126

RESUMO

Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.


Encapsulation of enzyme using spray drying is a versatile approach for improving enzyme stability and shelf-life in food industry.This paper gives an overview of recent development and progress in enzyme encapsulation using spray drying.Emerging spray drying techniques and novel design of spray drying chambers and atomizers are summarized.Ex ante process simulations and technoeconomic analysis are also presented providing critical insights for commercial production of encapsulated enzymes.

12.
Small ; 19(11): e2207073, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642808

RESUMO

Elastomers generally possess low Young's modulus and high failure strain, which are widely used in soft robots and intelligent actuators. However, elastomers generally lack diverse functionalities, such as stimulated shape morphing, and a general strategy to implement these functionalities into elastomers is still challenging. Here, a microfluidic 3D droplet printing platform is developed to design composite elastomers architected with arrays of functional droplets. Functional droplets with controlled size, composition, position, and pattern are designed and implemented in the composite elastomers, imparting functional performances to the systems. The composited elastomers are sensitive to stimuli, such as solvent, temperature, and light, and are able to demonstrate multishape (bow- and S-shaped), multimode (gradual and sudden), and multistep (one- and two-step) deformations. Based on the unique properties of droplet-embedded composite elastomers, a variety of stimuli-responsive systems are developed, including designable numbers, biomimetic flowers, and soft robots, and a series of functional performances are achieved, presenting a facile platform to impart diverse functionalities into composite elastomers by microfluidic 3D droplet printing.

13.
Proc Natl Acad Sci U S A ; 120(1): e2214757120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574680

RESUMO

Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio-nano interactions and pave the way forward in the development of more effective cancer nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Humanos , Membrana Celular/metabolismo , Nanopartículas/química , Proteínas/metabolismo , Neoplasias/metabolismo , Elasticidade
14.
J Cardiovasc Dev Dis ; 9(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36354768

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an inheritable arrhythmia syndrome that can lead to sudden cardiac death in patients while the heart structure is normal. However, the genetic background of more than 65% of BrS probands remains unclear. OBJECTIVES: The purpose of this study is to report the variant spectrum in a Chinese cohort with suspected BrS and to analyze their distinct clinical and electrocardiographic features. METHODS: Patients with suspected BrS from Tongji Hospital between 2008 and 2021 were analyzed retrospectively. RESULTS: A total of 79 probands were included in this study. Patients with type 1 BrS electrocardiogram (ECG) had a prolonged QRS duration compared to patients with type 2/3 BrS ECG. Of them, 59 probands underwent genetic testing. Twenty-five patients (42.37%) showed abnormal genetic testing results, and eight of them (13.56%) carried pathogenic/likely pathogenic (P/LP) mutations. Mutation carriers presented much more prominent depolarization and repolarization abnormalities than non-carriers, including a prolonged P-wave duration, QRS duration, QTc interval, decreased QRS amplitude, and deviation of the electrocardiographic axes (T-wave axis and R-wave axis). Furthermore, our study identified four novel P/LP mutations: Q3508X in TTN, A990G in KCNH2, G1220E, and D372H (in a representative pedigree) in SCN5A. CONCLUSIONS: Our study showed the variant spectrum of a suspected Chinese BrS cohort, and we identified four novel P/LP mutations in TTN, KCNH2, and SCN5A.

15.
Lab Chip ; 22(23): 4541-4555, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36318066

RESUMO

Diffuse axonal injury (DAI) is the most severe pathological feature of traumatic brain injury (TBI). However, how primary axonal injury is induced by transient mechanical impacts remains unknown, mainly due to the low temporal and spatial resolution of medical imaging approaches. Here we established an axon-on-a-chip (AoC) model for mimicking DAI and monitoring instant cellular responses. Integrating computational fluid dynamics and microfluidic techniques, DAI was induced by injecting a precisely controlled micro-flux in the transverse direction. The clear correlation between the flow speed of injecting flux and the severity of DAI was elucidated. We next used the AoC to investigate the instant intracellular responses underlying DAI and found that the dynamic formation of focal axonal swellings (FAS) accompanied by Ca2+ surge occurs during the flux. Surprisingly, periodic axonal cytoskeleton disruption also occurs rapidly after the flux. These instant injury responses are spatially restricted to the fluxed axon, not affecting the overall viability of the neuron in the acute stage. Compatible with high-resolution live microscopy, the AoC provides a versatile system to identify early mechanisms underlying DAI, offering a platform for screening effective treatments to alleviate TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Lesão Axonal Difusa , Humanos , Lesão Axonal Difusa/complicações , Lesão Axonal Difusa/diagnóstico , Lesão Axonal Difusa/patologia , Dispositivos Lab-On-A-Chip , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Axônios/fisiologia , Lesões Encefálicas Traumáticas/patologia
16.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4238-4247, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046914

RESUMO

This study aims to explore the efficacy and safety of Lianhua Qingwen preparations combined with Oseltamivir in the treatment of influenza patients. PubMed, Cochrane Library, EMbase, SinoMed, CNKI, Wanfang, and VIP were searched for the randomized controlled trials(RCTs) involving the comparison between the influenza patients treated with Lianhua Qingwen preparations combined with Oseltamivir and those treated with Oseltamivir alone. Fever clearance time was taken as the primary outcome indicator. Clinical effective rate(markedly effective and effective), time to muscle pain relief, time to sore throat relief, time to cough relief, time to nasal congestion and runny nose relief, time to negative result of viral nucleic acid test, and adverse reactions were taken as the secondary outcome indicators. The data were extracted based on the outcome indicators and then combined. The Cochrane collaboration's tool for assessing risk of bias was used to evaluate the quality of a single RCT, and the grading of recommendations assessment, development and evaluations(GRADE) system to assess the quality of a single outcome indicator. RevMan 5.3 was employed to analyze data and test heterogeneity. Finally, 16 RCTs involving 1 629 patients were included for analysis. The Meta-analysis showed that Lianhua Qingwen preparations combined with Oseltamivir was superior to Oseltamivir alone in the treatment of influenza in terms of clinical effective rate(RR=1.16, 95%CI [1.12, 1.20], P<0.000 01), fever clearance time(SMD=-2.02, 95%CI [-2.62,-1.41], P<0.000 01), time to muscle pain relief(SMD=-2.50, 95%CI [-3.84,-1.16], P=0.000 2), time to sore throat relief(SMD=-1.40, 95%CI [-1.93,-0.85], P<0.000 01), time to cough relief(SMD=-1.81, 95%CI [-2.44,-1.19], P<0.000 01), time to nasal congestion and runny nose(SMD=-2.31, 95%CI [-3.61,-1.01], P=0.000 5), and time to negative result of viral nucleic acid test(SMD=-0.68, 95%CI [-1.19,-0.16], P=0.01). However, due to the low quality of the trials, the above conclusions need to be proved by more high-quality clinical studies. In addition, we still need to attach importance to the adverse reactions of the integrated application of Chinese and western medicines.


Assuntos
Medicamentos de Ervas Chinesas , Influenza Humana , Ácidos Nucleicos , Faringite , Tosse/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Influenza Humana/tratamento farmacológico , Mialgia/induzido quimicamente , Mialgia/tratamento farmacológico , Ácidos Nucleicos/uso terapêutico , Oseltamivir/efeitos adversos , Faringite/tratamento farmacológico , Rinorreia
17.
Front Psychiatry ; 13: 901627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935415

RESUMO

Introduction: Suicide is one of the top five causes of adolescent mortality around the world. The socioecological resilience framework in explaining the risk factors and protective factors for suicidal ideation in left-behind children (LBC) has not been well explored. The current study aims to compare the prevalence of suicidal ideation in LBC and non-LBC, and explore its correlations with resilience factors among LBC. Methodology: This study was part of an epidemiological survey conducted by UNICEF exploring mental health outcomes in left-behind children. We implemented a cross-sectional study collecting data from 11 provinces and 1 municipal, with 5,026 participants (3,359 LBC, 1,667 controls) in year one junior high school living in impoverished areas of rural China. Data on suicidal ideation, self-harm, resilience factors including health-risk behaviors, psychological wellbeing as it was measured by the Strengths and Difficulties Questionnaire, peer relationship within the school environment, and family support were collected. Results: Overall prevalence of suicidal ideation among LBC was 7.2% which is significantly different from 5.5% reported by NLBC (χ2 = 4.854, p = 0.028). LBC reported a higher prevalence of self-harm (16.4%) than NLBC (13.0%; χ2 = 10.232, p = 0.001), but there was no difference in the prevalence of suicide plan, suicide attempt or help-seeking. LBC had significantly poorer psychological feeling, and greater emotional and behavioral difficulties peer relationship in the school environment than controls. In the multiple logistic regression, history of self-harm was the greatest predictor for suicidal ideation among LBC (OR = 2.078, 95% CI: 1.394-3.100, p < 0.001). Health risk behavior including previous smoking attempt, poor psychological feeling, and emotional and behavior difficulties, and poor peer relationship within school environment, were also significant risk factors for suicidal ideation among LBC. Conclusion: The prevalence of suicidal ideation and self-harm was greater among left-behind than non-left-behind children. Our results show resilience factors including previous self-harm, emotional and behavioral problems, smoking, and poor peer relationship are significantly associated with suicidal ideation in left-behind adolescents.

18.
Biomater Adv ; 136: 212782, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929332

RESUMO

The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.


Assuntos
Matriz Extracelular , Hidrogéis , Neoplasias , Fenômenos Biofísicos , Colágeno/análise , Matriz Extracelular/química , Humanos , Hidrogéis/análise , Sefarose/análise , Microambiente Tumoral
19.
J Colloid Interface Sci ; 624: 242-250, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660893

RESUMO

Förster resonance energy transfer (FRET) has been widely used for monitoring drug release from nanoparticles (NPs). To understand the drug release from bioinspired drug-core silica-shell NPs, we synthesised two types of NPs using the dual-functional peptide SurSi via biosilicification for the first time, i.e., silica NP conjugated with FRET (Cy3 and Cy5) molecules, and FRET-core (DiO and DiI) silica-shell NP with different shell thicknesses (18 and 41 nm). The release kinetics of these two types of NPs were investigated under different conditions, including fetal bovine serum (FBS) and in cells, to mimic the drug release during blood circulation and intracellularly. Two different drug release mechanisms were identified. Cargo diffusion dominated the release during circulation, while the degradation of silica shell played a key role in drug release intracellularly.


Assuntos
Nanopartículas , Dióxido de Silício , Difusão , Liberação Controlada de Fármacos , Transferência Ressonante de Energia de Fluorescência , Nanopartículas/química , Dióxido de Silício/química
20.
J Agric Food Chem ; 70(23): 7139-7147, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35648591

RESUMO

Enzymes are important catalysts for biological processes due to their high catalytic activity and selectivity. However, their low thermal stability limited their industrial applications. The present work demonstrates a simple and effective method for enzyme immobilization via spray drying. Alginate was used as a support material. Phytase, an important enzyme in the animal feed industry, was selected to study the effect of enzyme immobilization using alginate particles on its thermal stability. The physicochemical properties of alginate particles such as size, surface morphology, and heat resistance were studied. Successful immobilization of phytase was confirmed by confocal microscopy, and the immobilized phytase retained 58% of its original activity upon heating at 95 °C, compared to 4% when the alginate support material was absent. Phytase was released promptly in a simulated gastrointestinal tract with >95% of its original activity recovered. The spray drying method for phytase immobilization is scalable and applicable to other enzymes for various applications.


Assuntos
6-Fitase , Alginatos , 6-Fitase/química , Alginatos/química , Animais , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Secagem por Atomização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...